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ABSTRACT: The viscoelastic properties of filled elas-
tomers (uncured styrene–butadiene rubber filled with car-
bon black) were investigated with two shear rheometers
specially designed for the characterization of complex poly-
mer systems. A torsional strain-controlled rheometer [i.e., a
rubber process analyzer (RPA)] was used in dynamic and
relaxation modes for measuring the storage and loss moduli
and the relaxation modulus. A stress-controlled sliding cyl-
inder rheometer (SCR) was operated for the measurement of
the creep compliance. Both devices could be operated on a
large scale of imposed strains or stresses ranging from the
linear viscoelastic regime to the nonlinear viscoelastic re-
gime, and they were complementary in supporting the orig-

inal viscoelastic behavior of filled elastomers for a wide
experimental time range. Moreover, when the measuring
ranges of the two apparatus overlapped, a cross-check of the
material functions obtained with the RPA or SCR could be
successfully carried out. This validation of the data was
performed not only in the linear domain of viscoelasticity,
with the classical approach of a generalized Maxwell model,
but also in the nonlinear domain, with a viscoelastic integral
model of type K-BKZ. © 2002 Wiley Periodicals, Inc. J Appl
Polym Sci 87: 31–41, 2003
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INTRODUCTION

Filled elastomers are known to exhibit a complex rheo-
logical behavior that reflects interactions between the
elastomer and the reinforcing filler, either carbon
black or silane-treated silica. This behavior is charac-
terized, in particular, by a high level of nonlinear
viscoelasticity. Highly loaded elastomer compounds
hardly exhibit a linear domain of viscoelasticity. From
an industrial point of view, this has important conse-
quences for the processing flows of such materials.
Several theoretical attempts have been made to de-
scribe the complicated rheological behavior of filled
polymers (see the review in ref. 1), and the modeling
of the nonlinear viscoelastic properties of elastomers
and their compounds is still a question under study.2

Concerning the rheological characterization, con-
ventional parallel-plate or cone-and-plate rheometers
are of limited use with elastomers because wall slip
may occur, and the loading of the sample into the
testing gap is not easy, affecting the repeatability of
tests. Other specific features of these materials, such as
their high viscosity or their chemical and physical
aging, may raise a number of difficulties. For these

reasons, it is necessary to develop specific measuring
devices and protocols. Such devices are available in
our laboratory. One is a strain-controlled shear rheo-
meter [i.e., a rubber process analyzer (RPA)] specifi-
cally designed for elastomers and their compounds
(RPA 2000, Alpha Technologies).3 Its design and op-
erating conditions originate from the practice of vul-
cametry and are, therefore, slightly different from
those of conventional rheometers. It can be operated in
dynamic or relaxation modes. The second apparatus,
used to carry out creep (i.e., stress-controlled) experi-
ments, is a prototype of a sliding cylinder rheometer
(SCR), developed in the laboratory4 and particularly
suited for self-supporting materials such as those used
in this study. It can also provide viscosity data at very
low shear rates. With these two techniques, we are
able to characterize the viscoelastic properties of com-
plex materials in shear-stress- or shear-strain-con-
trolled modes, over a wide range of stresses or strains,
thereby covering the linear and nonlinear viscoelastic
regimes.

The purpose of this article is twofold. First, we show
how these two devices are able to characterize the
original viscoelastic behavior of uncured carbon black
filled elastomers. The results presented in this work
are limited to compounds with sufficiently low filler
contents so that a domain of linear viscoelasticity can
be observed. The transition from the linear viscoelas-
ticity regime to the nonlinear viscoelasticity regime is
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evidenced here not only with respect to the strain
(with the RPA) but also with respect to the stress via
SCR creep tests, which is less common. Moreover, we
show how this behavior is affected by the filler volume
fraction. Second, we carry out a cross-check of the data
provided by both techniques to evaluate their consis-
tency and validity. This is done with linear and non-
linear viscoelastic models, which are briefly presented.
This cross-check is shown to be satisfactory in the time
domain in which the experimental time ranges of both
techniques overlap. Some limitations appear, how-
ever, and are discussed. Beyond the evaluation of the
reliability and consistency of our experimental means,
this work yields all the viscoelastic functions, in both
the linear and nonlinear viscoelasticity domains, re-
quired for implementation in numerical codes to sim-
ulate the processing flows of typical industrial com-
pounds. However, this last aspect is beyond the scope
of this article.

EXPERIMENTAL

Material preparation

All tests were performed with a series of compounds
based on an amorphous, emulsion-polymerized sty-
rene–butadiene copolymer (SBR 1500; styrene content
� 23.5%, number-average molecular weight � 77,000
g mol�1, weight-average molecular weight � 405,000
g mol�1, unknown branching ratio). Its glass-transi-
tion temperature was around �50°C. N330 carbon
black (nitrogen adsorption surface area [BET method]:
83 m2/g) was used as a filler at different concentra-
tions. The carbon black elementary particles had a
characteristic dimension of 30 nm. For these com-
pounds, a percolated particle network was evidenced
from electrical conductivity measurements for carbon
black volume fractions equal or greater than 0.15 (in
agreement with earlier works5). The percolation
threshold, corresponding to the volume fraction at
which the particles form a continuous network in the
polymer matrix, characterizes the onset of physical
gelation. This is associated with significant changes in
the rheological properties, particularly with a yield
behavior well documented for highly filled elastomers
in earlier works (e.g., ref. 6). In this study, we focused
on the fluidlike behavior of elastomer compounds,
selecting carbon black volume fractions below 0.15 so
that no yield behavior would be expected. Three elas-
tomer samples were studied: the pure elastomer and
two compounds whose carbon black volume fractions
were � � 0.045 and � � 0.123, respectively. The usual
major ingredients of an industrial compound were
added, too, but within the limits of simple recipes.
Therefore, processing oil, protectors (antiozone and
antioxidant), and vulcanization coagents (zinc oxide
and stearic acid) were blended with the polymer and

carbon black. However, the curing system (sulfur and
accelerators) was excluded because we focused on
flow properties. The quantities of all components
[parts per hundred parts of rubber (phr)] are given in
Table I.

Mixing was achieved in a Banbury-type internal
mixer. To limit the effects of the specific mixing energy
(i.e., energy per unit volume of material), which is
known to strongly affect rheological properties, we
gave all compounds the same specific energy (ca. 1550
MJ/m3). Immediately after mixing, the batches were
cooled and homogenized between the cylinders of an
open mill and were sheeted off in the form of approx-
imately 7-mm-thick sheets, from which most samples
were directly cut for testing. These sheets were kept in
the dark at room temperature for several weeks before
sampling to ensure the stabilization of their proper-
ties. It must be mentioned that the samples for SCR
tests required a second milling, so their thickness
came close to 1 mm. To prevent any influence of this
remilling, we also kept the SCR samples for several
weeks before creep experiments, and the material
properties were checked to be identical to those of
non-remilled samples before this study.

Shear-strain-controlled rheometry with the RPA

The behavior of linear viscoelastic materials is charac-
terized by functions such as the elastic and loss mod-
uli. These functions are obtained in dynamic testing,
from the measurement of the forces and torques de-
veloped by the material when subjected to an oscilla-
tory deformation of controlled amplitude and fre-
quency. The RPA 2000 (Alpha Technologies) is a tor-
sional rheometer specially designed to perform such
tests on elastomers and their compounds.3 The testing
cavity is closed and operated under pressure (4 MPa)
to reduce slip at the wall and to ensure a perfectly
controlled loading of the sample. Reproducibility is
achieved within �3%. Another particularity of the
RPA is its reciprocal cone geometry (of angle � � 0.125
rad and radius R � 20.6 mm). The lower cone is
moved with a controlled angular rotation �. The
torque transmitted by the deformed sample is mea-
sured on the upper cone. The reciprocal cone geome-

TABLE I
Formulation of the SBR/Carbon Black Compounds

Ingredient phr

SBR 1500 100
N330 carbon black 0, 10, 30 (volume fractions:

0, 0.045, and 0.123)
Zinc oxide 5
Stearic acid 3
Processing oil (aromatic) 5
Antidegradants 3
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try is equivalent to a conventional cone-and-plate ge-
ometry as long as the cone angle � is sufficiently small.
We have checked that in the RPA this condition is
fulfilled, and so the deformation inside the sample can
be considered to be viscosimetric with good precision.
The standard equations used in cone-and-plate rheo-
metry apply for the shear strain �, approximately con-
stant throughout the sample and equal to � � �/�,
and for the derivation of the shear stress from the
measured torque.7 In the domain of linear viscoelas-
ticity, under a sinusoidal strain �(t) � �0(sin �t) of
amplitude �0 and pulsation �, the elastic and loss
moduli G�(�) and G�(�) are computed from the sinu-
soidal stress.8 The determination of the domain of
linear viscoelasticity is required before any analysis.

The RPA can also be operated in the relaxation
mode, imposing a step strain of controlled amplitude
� and measuring the decrease of the shear stress �(t,�)
with time when this deformation is kept constant. This
measurement yields another function characteristic of
viscoelasticity, the relaxation modulus in shear, G(t,�)
� �(t,�)/�. In practice, this measurement presents the
following limitations. First, the data obtained at small
strains and long times are scattered because small
values of the measured torque fall below the sensibil-
ity threshold of the RPA (1 dNm). Second, with the
RPA, the initial step strain is likely to be achieved
within 0.05 s according to the manufacturer. However,
for the larger strains (� � 5.6), this is actually achieved
in approximately 0.2 s, so the imposed deformation
cannot be considered a pure step strain. Despite these
limitations, we see later that measurements in the
relaxation mode give satisfactory results for a speci-
fied time range and are particularly useful in the do-
main of nonlinear viscoelasticity.

Shear-stress-controlled rheometry with the SCR

A thorough description of the device used and of the
testing procedure in creep can be found in previous
articles.4,9 The sample is enclosed in the annular cavity
defined by two coaxial cylinders. Shearing of the ma-
terial is promoted by a weight being hung on the inner
cylinder, whose displacement is recorded with a mi-
crometer-sensitive optical transducer. The shear stress
� is derived from the weight and geometrical param-
eters of the gap. In these experiments, a weight com-
pensation device is used, consisting of a counter-
weight equilibrating the weight of the inner cylinder.
It enables the stress to be as low as desired.

All the data processing for the determination of the
viscosity function has been described elsewhere.4

Here, the creep compliance is addressed, and it is
derived from the recordings as follows. The position
of the transducer, p(t), is set to zero before the start of
the run, that is, just before the weight is applied to the
inner cylinder. The displacement recording is the evo-

lution of p(t) and consists of several thousands points
at different time intervals. Short runs were performed
over 800 s, with 4000 points being acquired every 0.2 s.
In addition, long runs involved a first stage of data
acquisition for 200 points every 0.1 s, instantaneously
followed by a second set of 80 points every 1 s and a
subsequent acquisition of over 3000 data points every
20 s for a total run duration of over 16 h. This exper-
imental procedure allowed more tests to be performed
and provided a wide range of data, the initial (800 s)
part of the plots being often sufficient to assess the
superposition (i.e., linear behavior) or not.

The total strain at time t is given by �(t) � 2p(t)/a
ln(b/a) (see the appendix). The creep compliance is
obtained at a given stress � from J(t,�) � �(t,�)/�.
From the recordings, it could clearly be seen that an
instantaneous strain occurred, so the compliance
could be split into an instantaneous component and a
delayed component. The compliance plotted in the
subsequent graphs includes this instantaneous com-
ponent and, therefore, exhibits a finite value at short
times.

VISCOELASTIC BEHAVIOR OF FILLED
ELASTOMERS

All rheological characterizations presented in this
study were carried out at 100°C.

Strain-controlled behavior

A first discrimination between linear and nonlinear
viscoelastic behaviors can be readily obtained with the
RPA via oscillatory tests at a given angular frequency
�, with different strain amplitudes �0 imposed. The
evolution of the measured elastic modulus G�(�0) with
strain amplitude �0 and for a pulsation � � 6.28 rad/s
is shown in Figure 1(a) for the three samples under
study. In all cases, a linear viscoelastic behavior cor-
responding to an elastic modulus independent of de-
formation can be observed at small deformations. In
this deformation range, subsequent tests at a given
strain amplitude and a varying angular frequency are
performed, yielding the classical functions G�(�) and
G�(�) of linear viscoelasticity. The evolution of the
elastic modulus G�(�) as a function of frequency � at
a strain amplitude �0 � 0.07 is shown in Figure 1(b) for
the same three samples. In Figure 1(a), the critical
deformation amplitude above which the elastic mod-
ulus decreases with increasing �0 characterizes the
onset of the nonlinear viscoelastic behavior.

The influence of the filler content on the viscoelastic
properties can be seen in Figure 1(a,b). A first obser-
vation concerns the critical deformation in Figure 1(a).
It is a decreasing function of the filler content, indicat-
ing that the presence of the filler enhances the nonlin-
earity of the viscoelastic behavior. The dynamics of a
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pure elastomer is dominated by the network formed
by the entanglements between macromolecules, and
this network can sustain large deformations. The in-
corporation of small particles into an elastomer pro-
motes the formation of a new microstructure, which is
more sensitive to the deformation than the pure elas-
tomer network. In some cases, for highly filled elas-
tomer compounds, no linear domain can be observed
at all in the range of deformations accessible with the
RPA. A second observation is that the increase of the
filler volume fraction is associated, at a given oscilla-
tion amplitude [Fig. 1(a)] or frequency [Fig. 1(b)], with
an increase in modulus. This effect is particularly sig-

nificant in the domain of linear viscoelasticity. More-
over, it can be seen in Figure 1(b) that in the high-
frequency range, the curves obtained at different vol-
ume fractions can be shifted by a numerical factor
depending on the volume fraction only, as described,
for instance, by the Guth and Gold equation.10 At low
frequencies, however, an additional mechanism, not
elucidated yet, causes the modulus enhancement ef-
fect to become frequency-dependent; that is, here the
filler content also causes a modification of the dynam-
ics as such.

A second characterization of the compounds was
made with the RPA in the relaxation mode, measuring
the decrease of the shear stress �(t,�) with time after a
step deformation � ranging from 0.07 to 12.6. As an
example, the time evolution of relaxation moduli
G(t,�) are shown in Figure 2 for the elastomer filled
with a � � 0.123 carbon black volume fraction. The
trends observed are the same as those for the other
two compounds. For the smallest deformations (�
� 0.14), the relaxation moduli G(t,�) obtained at dif-
ferent deformations are identical within the experi-
mental precision (with small scatter in the data when
the measured torque is small, as mentioned earlier).
This is characteristic of the domain of linear viscoelas-
ticity, and the corresponding modulus is, therefore,
the linear relaxation modulus in the limit of vanishing
deformation, G(t,� � 0) � G0(t), independent of de-
formation. For larger strains (� � 0.14), a different
curve is obtained for each deformation, the relaxation
modulus at a given time decreasing with increasing
deformation, which is a characteristic of the domain of
nonlinear viscoelasticity. Note that the curves ob-
tained at large strains (� � 5.6) may not be significant,

Figure 1 Evolution of the elastic modulus with (a) the
strain amplitude (� � 6.28 rad/s) and (b) the angular fre-
quency (�0 � 0.07) for the three elastomer samples: (F)
unfilled elastomer, (�) elastomer filled with � � 0.045 car-
bon black, and (�) elastomer filled with � � 0.123 carbon
black.

Figure 2 Time evolution of the relaxation modulus (elas-
tomer filled with � � 0.123 carbon black) measured at
different values of �: 0.07, 0.14, 0.7, 1.4, 2.8, 5.6, and 12.6
(from top to bottom).
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the imposed deformation being no pure step deforma-
tion as already mentioned. The range of step strains at
which the transition between linear and nonlinear be-
haviors is observed is consistent with the range of
deformation amplitudes showing the same transition
in the oscillatory mode. An increase in the relaxation
modulus with increasing filler content, at a given time
and a given step strain, is also noticed (not shown
here). The same previous interpretations can be made
here concerning the influence of the filler content on
the observed trends.

Stress-controlled behavior

Each compound was tested with the SCR in a number
of runs under different stresses ranging from 500 to
20,000 Pa. In practice, the stress applied obviously had
to be varied according to the filler content of the
material because the resulting strain and experiment
duration had to be kept within reasonable limits. In-
deed, too low a stress level induced a very slow dis-
placement, affecting the precision of the measure-
ments. As a matter of fact, recordings of very slow
displacements were very scattered because the varia-
tion of the position between two acquisition points
was too close to the transducer precision. Moreover, a
low shear stress resulted in excessive experimental
duration (with respect to the material stability at a
high temperature and possible maturation effects) for
a steady flow to be attained. However, excessive stress
resulted in very fast deformation and very large
strains, quickly leading to damage (decohesion) to the
sample. Therefore, a compromise was found, and the
shear stress level was adapted to each compound; this
explains why the ranges are not the same for all. For a
given compound, the sample was changed at each
run.

The plots of the creep compliance versus time for
each compound, at the different stresses applied, are
shown in Figure 3(a–c). The first comment that can be
made concerns the level of the creep compliance,
which decreases when the filler content increases, as
expected. This is obviously correlated to the increase
in the viscosity and dynamic moduli of the material.
Next, for a given compound, the creep compliance
increases as the shear stress increases, except for the
lowest stress values. Indeed, the curves at low stress
can be considered superposed within the experimen-

Figure 3 Time evolution of the creep compliance measured
at different values of �: (a) unfilled elastomer [(�) � � 506
Pa, (‚) � � 765 Pa, (�) � � 1531 Pa, and (F) � � 5783 Pa],
(b) elastomer filled with � � 0.045 carbon black [(�) � � 506
Pa, (�) � � 1084 Pa, (‚) � � 3036 Pa, and (F) � � 5741 Pa],
and (c) elastomer filled with � � 0.123 carbon black [(�) �
� 1446 Pa, (�) � � 2530 Pa, (‚) � � 3614 Pa, and (F) �
� 7590 Pa].
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tal error interval, which is �10% in the worst cases
and most often �5%. This clearly indicates that in this
stress range, the compliance is only time-dependent
and meets the requirement for the linear viscoelastic
domain. Therefore, the linear domain is also apparent
in these creep plots, although its evidence (stress-
independent compliance) is different from what is
observed in relaxation (stress-independent modulus).
A trace of the yield behavior may be suspected in
Figure 3(c) for the highest (in this work) filled com-
pound (see the leveling out of the creep compliance at
long times). However, when plotting the creep curves
(deformation vs time), we do not see a clear transition
between a solidlike behavior at low stresses and a
fluidlike behavior at higher stresses. The deformation
rates at long times are at least 10�5 s�1, which can be
considered significant, and are even 1 order of mag-
nitude greater than those measured by other authors
for highly filled compounds beyond the yield.11 An-
other explanation for this effect is suggested later.

Conclusion

As can be stated from the two preceding sections, both
the linear and nonlinear viscoelastic domains can be
identified for the three batches used in this study and
investigated by all the testing modes available. In the
shear-controlled mode, the oscillatory tests provide
the elastic and loss moduli of linear viscoelasticity
together with the critical deformation amplitude
above which the behavior becomes nonlinear, whereas
the relaxation mode provides the shear-relaxation
modulus not only in the linear viscoelasticity domain
but also in the nonlinear domain. So do stress-con-
trolled (creep) tests, yielding the compliance in the
linear and nonlinear domains of viscoelasticity.

At this point, it would be interesting to establish a
correspondence between these characteristic vis-
coelastic functions.

DERIVATION OF THE RELAXATION
MODULUS FROM THE CREEP COMPLIANCE

AND VICE VERSA

The purpose of this section is to correlate the data
obtained from the RPA and SCR measurements. This
can be achieved on two levels. In the domain of linear
viscoelasticity, data processing based on a generalized
Maxwell model yields the relaxation modulus G0(t)
from the experimental creep compliance J0(t) via the
intermediate computation of the relaxation spec-
trum.12 A comparison with the relaxation experiments
helps with evaluating the reliability and consistency of
the two types of measurements. In the nonlinear vis-
coelastic domain, relaxation data are analyzed to char-
acterize the strain dependence of the relaxation mod-
ulus. This allows for the determination of the so-called

damping function, introduced in constitutive equa-
tions such as the K-BKZ model. This model provides,
among other examples, a creep function depending on
both time and stress, which is finally compared with
the experimental compliance data.

Linear viscoelasticity

In this case, we extract the relaxation modulus from
computations based on creep compliance data and
compare them to experimental data. This requires the
determination of the relaxation time spectrum H(�).
For this, the experimental data are analyzed with a
generalized Maxwell model.

Generalized maxwell model

In the range of small deformations, the relation be-
tween the deformation and stress in a viscoelastic
material is described by the Boltzmann superposition
principle:

��t	 � �
�


t

M�t 	 t�	 � ���t	 	 ��t�	� � dt� (1)

where �(t) and �(t) are the shear stress and strain at
time t. M(t � t�) is the memory function of the linear
viscoelasticity, which is deduced from the relaxation
modulus G0(t):8

M�t 	 t�	 �
d

dt� G0�t 	 t�	 (2)

With such a model, it is necessary to represent the
modulus by an explicit mathematical function, and the
function most often used is that of the discrete gener-
alized Maxwell model:

G0�t 	 t�	 � �
i�1

N

Giexp���t 	 t�	/�i� (3)

where Gi is the elastic modulus of a simple Maxwell
element corresponding to a relaxation time �i. Physi-
cally, this model is consistent with the fact that the
relaxation of a polymeric material is the result of sev-
eral independent relaxation processes at the molecular
level, each having a characteristic time �i. The discrete
relaxation spectrum, that is, the set of N pairs of values
(Gi,�i), is determined from experimental data. The
generalized Maxwell model is attractive from a prac-
tical point of view because it allows the use of a large
number N of relaxation modes. This is necessary when
we are dealing with polymers of large polymolecular-
ity, as is the case in this study. As a counterpart, the
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determination of the discrete spectrum is an ill-posed
problem, which means that an infinite number of sets
of N relaxation modes can be found that are equally
satisfactory from the point of view of fitting the data.
Honerkamp and Weese13 explored some of the prob-
lems associated with the determination of the discrete
spectrum as a material characteristic, for example, for
comparison with a spectrum calculated from a molec-
ular theory.

Computation of the relaxation time spectrum

The relaxation function H(�) and the retardation func-
tion L(�) can be computed from a set of discrete data
of either the dynamic moduli G�(�) and G�(�) or the
relaxation modulus G0(t) or even the creep function
J0(t) (for more details on the relationships between
these functions in the framework of the Maxwell
model, see ref. 12). In the literature, various techniques
have been proposed to determine the discrete relax-
ation spectrum (Gi,�i) from either a set of storage and
loss modulus data or any other viscoelastic function.
Among these, we chose a nonlinear regularization14

method (NLREG15). Of course, the time range of the
relaxation spectrum determined by NLREG does not
extend beyond the time range of the set of data. In
practice, we used the recommended number of modes
N � 71 for all the computations. To validate the pro-
gram, we first converted experimental sets of G�(�)
and G�(�) data, via the determination of H(�), into the
relaxation modulus G0(t). An excellent superposition
between measured and computed G0(t) values was
obtained in the 0.01–100-s time range in which the
relaxation experiments are reliable. This calculated
G0(t) is not scattered and, therefore, is used instead of
experimental G0(t) for further computation and plot-
ting (see Fig. 4 for an example). It can be concluded
that the linear viscoelastic approach that was origi-
nally developed for pure polymer systems also applies
very satisfactorily to the more complex systems that
we have tested.

From the creep compliance data to the
relaxation modulus

J0(t) data measured in the linear domain are now
processed by NLREG to derive H(�) and ultimately
G0(t). These computed data are plotted in Figure 4, in
which it is clear that the data obtained with the RPA
and SCR concern very different time ranges (0.001–20
s for the RPA and 1–
1000 s for the SCR). However,
the agreement between the two sets of data is satis-
factory for the time range in which their time domains
overlap. The interest in the confrontation of both tech-
niques is that it allows us to extend the time range
actually available for each.

Nonlinear viscoelasticity

In this part, we show how, starting from the relaxation
modulus data obtained in the nonlinear viscoelasticity
domain, it is possible to derive a nonlinear viscoelastic
model of type K-BKZ. This model is then used to
compute the creep compliance data obtained in the
nonlinear viscoelasticity domain.

Analysis of relaxation modulus data

When Figure 2 is plotted on a log–log scale, the curves
of the relaxation modulus obtained at different defor-
mations can be deduced from one another by a simple
vertical shift. This suggests the following procedure.
We divide the modulus obtained at a given deforma-
tion G(t,�) by a quantity that depends on the defor-
mation, which is denoted h(�). This quantity is chosen
in such a way that the division yields the modulus of
linear viscoelasticity, G0(t). The result is shown in
Figure 5 on a semilog scale by the plotting of G(t,�)/
h(�): all the curves of Figure 2 collapse on a single
curve corresponding to G0(t). Note, however, that in
Figure 5, the collapsing does not work well at very
short times (t 
 0.01 s). For the rest of the time range,
the nonlinear relaxation modulus can, therefore, be
written as the product of a function of time by a
function of deformation:

G�t, �	 � G0�t	 � h��	 (4)

Figure 4 Time evolution of the linear relaxation modulus
computed with NLREG from G�(�) and G�(�) measured
with the RPA [(E) unfilled elastomer and (�) elastomer
filled with � � 0.123 carbon black] and from J0(t) measured
with the SCR [(–) unfilled elastomer and (- � -) elastomer
filled with � � 0.123 carbon black].
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where h(�) is called the damping function. The prop-
erty described by eq. (4) is called the factorization
property and expresses the fact that the effects of time
and deformation on the relaxation process are inde-
pendent. This was experimentally observed long ago
for a wide range of pure polymers.16,17 It was also
predicted by molecular theories showing that it orig-
inates from a loss of entanglements as the strain am-
plitude increases.18 The theories also show that this
property does hold only for a time range beyond a
characteristic molecular time. The striking point in our
work is that we observe the factorization property not
only for the pure elastomer but also for the two filled
compounds. In other words, for the relatively low
level of filler content studied here, the elastomer dy-
namics in the nonlinear domain is not qualitatively
modified by the presence of the particles. Only the
values of the damping function are affected by the
filler content. In Figure 6, we have plotted the evolu-
tion of damping functions with deformation �. Each
point of h(�) has been obtained from a relaxation
modulus at a given value of � by the procedure de-
scribed previously. For the sake of clarity, only the
pure elastomer and the more filled compound are
represented. The damping function starts from h(�)
� 1 in the linear domain (of vanishing deformation)
and decreases with increasing strain. The values of
h(�) at a given deformation are smaller for a larger
filler volume fraction. This indicates that the sensitiv-
ity to deformation increases with increasing filler con-
tent.

Nonlinear integral viscoelastic model: the factorized
K-BKZ model

The property of factorization that has been shown
experimentally in the previous section leads us to use
a nonlinear viscoelastic model of type K-BKZ.8 This is
a factorized integral model for which the shear stress
at time t is written as follows:

��t	 � �
�


t

M�t 	 t�	 � h���t	 	 ��t�	�

� ���t	 	 ��t�	� � dt� (5)

This model is a generalization of the Boltzmann su-
perposition principle, in which the nonlinearity is in-
troduced via the damping function. [Equation (1) is
recovered for vanishing deformation as h(�) � 1].
Equation (5) can be conveniently rewritten as follows:

��t	 � G0�t	 � h���t	� � ��t	 � �
0

t d
dt� G0�t 	 t�	

� h���t	 	 ��t�	� � ���t	 	 ��t�	� � dt� (6)

Under this form, the K-BKZ model is easily handled to
compute the stress from a given deformation history,
with both the linear relaxation modulus and the
damping function being known. For instance, for an
imposed step strain [�(t) � � for t � 0], eq. (6) readily
yields eq. (4). More difficult, however, is its applica-
tion to the creep tests because in eq. (6) the unknown
deformation becomes an implicit function of the im-

Figure 5 Master curve of G(t,�)/h(�) as a function of time
(elastomer filled with � � 0.123 carbon black) at different
values of �: 0.07, 0.14, 0.7, 1.4, 2.8, 5.6, and 12.6 (from bottom
to top).

Figure 6 Evolution of the damping function with the step
strain [(F) unfilled elastomer and (�) elastomer filled with
� � 0.123 carbon black]. The lines show the fit by a function
of the form h(�) � A exp(���) � B exp(���).20
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posed stress. This difficulty can be solved numerically
with the procedure used by Wagner19 in a previous
work on low-density polyethylene melts in exten-
sional creep. The integral equation with the unknown
deformation is inverted numerically by a method of
successive integration on constant time steps. In prac-
tice, we choose the time step in relation to the exper-
imental creep data acquisition period described in the
Experimental section. We use for G0(t) the 71 relax-
ation modes computed by NLREG from the creep
compliance data. For computational tractability, the
measured damping functions have to be fitted by an-
alytical equations. We have used for that an equation
of the Osaki type20 (the result of the fit is shown as
continuous lines in Fig. 6).

Comparison with creep compliance data

The results of the computation are shown in Figure 7
(continuous lines) along with the experimental data
(which are the same as those in Fig. 3). On each graph,
the creep compliance corresponding to the linear do-
main (vanishing stress) is well predicted by the solu-
tion of eq. (6), for which we have taken h(�) � 1. This
is simply a consequence of the consistency of the
Maxwell model, as the spectrum of relaxation times
used in eq. (6) has been deduced from this same creep
compliance. A small deviation of the Maxwell model
from the experimental data can be observed for the
highest filled compound [Fig. 7(c)], but we attribute
this to some problems with the experimental data at
very long times, as discussed later. Concerning the
description of the nonlinear creep compliance (mea-
sured at a large stress), it can be seen that for the pure
elastomer [Fig. 7(a)] the K-BKZ model is in very good
agreement with the experimental data, at least in the
time range investigated here. For the lowest filled
compound [Fig. 7(b)], the agreement is also good,
despite a small deviation observed from t � 200 s. For
the more filled compound [Fig. 7(c)], the agreement is
only qualitative, a discrepancy between the model and
experiment arising already at short times. In all cases,
the model succeeds in describing the increase of creep
compliance with increasing stress. This is achieved
essentially through the damping function. However, a
quantitative agreement generally appears to become
more difficult at long times, at which the model tends
to overestimate the creep compliance. This is due to

Figure 7 Time evolution of the creep compliance at differ-
ent values of � [(F,�) measured with the SCR (see Fig. 3),
(—) computed with the K-BKZ model, and (–) computed
with the generalized Maxwell model]. For the modeling, the
relaxation spectrum was computed from J0(t) measured in
the linear domain: (a) unfilled elastomer, (b) elastomer filled
with � � 0.045 carbon black, and (c) elastomer filled with �
� 0.123 carbon black.
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limitations of the nonlinear K-BKZ model under the
form used in this work, limitations that are discussed
next.

CONCLUSIONS

The cross-check method used in the domain of linear
viscoelasticity has been validated for the three batches
with equivalent quantitative agreement. The imple-
mentation of the K-BKZ model in the domain of non-
linear viscoelasticity yields quantitatively good results
for the pure polymer [Fig. 7(a)], whereas the agree-
ment between the experiment and model deteriorates
with increasing filler volume fraction [Fig. 7(b,c)]. This
raises a number of comments.

The first remark concerns the precision achieved in
the measurement of the different material functions.
Relatively large experimental errors in the measure-
ments of the relaxation modulus at very long times
(due to the limits of the RPA torque transducer) have
already been mentioned. Moreover, the step strain
becomes questionable at large strains. As a result, the
time and deformation domain over which the damp-
ing function can be considered valuable is restricted,
too. Problems have also been noticed with the mea-
surements of compliance from SCR tests at the very
beginning of the test run. The displacement is all the
smaller as the stress is small. Then, for the lowest
stress values, the accuracy of the measurement is close
to the displacement transducer sensitivity, and erratic
variations can be observed. In these situations, the
relative experimental error for the initial values of
compliance is large.

Another experimental difficulty can be observed at
the end of some experimental SCR recordings [partic-
ularly with the more filled compound; see Fig. 3(c)].
The compliance seems to level out, especially when
the run is long, that is, greater than about 6 h. A
tendency to yielding may be invoked, but as men-
tioned earlier, because of the magnitude of the defor-
mation rate, it is difficult to conclude that no flow
occurs. The shape of the creep plot at long times may
also indicate a problem of maturation (or aging) of the
compound. As a matter of fact, carbon black/rubber
compounds are known to have their rheological prop-
erties evolving over the first weeks of their storage,
and these properties evolve all the faster (i.e., within
hours) when the temperature is high.21 Such behavior
is related, in the case of SBR compounds, to the in-
crease in the bound rubber fraction. Therefore, despite
the long storage time observed before the testing of
the materials, a residual maturation effect in the SCR
may not be excluded. This interpretation is consistent
with the fact that the compliance leveling out is not
observed here with the lowest filled compounds.

From a more fundamental point of view, the ques-
tion of the flow mechanisms in such filled elastomer

compounds is addressed through our experiments.
What type of molecular dynamics is involved in the
linear and nonlinear viscoelastic shear behavior of
those filled polymeric materials is not elucidated yet.
In particular, although the property of factorization
seems here to hold as for pure polymers, the physical
significance of a damping function for filled elas-
tomers has to be further examined.

In conclusion, this study is interesting first because
it shows the processing of quite original experimental
data, obtained on complex polymeric materials, for
cross-checking material functions extracted from dif-
ferent types of rheological techniques and second be-
cause it raises a number of more fundamental ques-
tions that need to be further considered.

APPENDIX: DERIVATION OF THE
DEFORMATION FROM THE SCR
DISPLACEMENT RECORDINGS

From the displacement curve, the inner cylinder ve-
locity is calculated as follows:

v�t	 �
dp�t	

dt

The shear rate �̇(t) is derived from the value of v(t)
with the annular geometry of the gap taken into ac-
count. �̇ is given as follows:

�̇�t	 �
2v�t	

a ln
b
a

where a and b are the inner and outer diameters of the
annular gap, respectively.

The shear rate is defined as the derivative of the
strain function �(t). Then, it can be written that

�̇�t	 �
d��t	

dt �
2v�t	

a ln
b
a

�
2 dp�t	

a ln
b
a dt

The total strain at time t is

��t	 � �
0

t d�

dt� dt� � �
0

t 2

a ln
b
a

dp

Therefore,

��t	 �
2

a ln
b
a

�p�t�	�0
t �

2

a ln
b
a

p�t	
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